The I-Codes and NFPA 101 Code all contain a specific set of criteria that must be met when testing to the NFPA 286. These criteria do not exist for UL 1715 rather this method relies on visual observations of the fire test only. Would you trust a fire protective coating that is solely passed based off an observation when there is a stricter test with defined pass/fail criteria specifically listed within the standard and in the Codes? Visual observations cannot be defined to demonstrate meeting the intent of the Code, amazingly the visual evaluator is not even required to watch the UL 1715 fire test live, they can simply view a video?

We know for sure we would NOT! This is why we only test to NFPA 286 so as our partners you never will have to explain why you use DC315. How absurd to go on record, like some of our competitors have, that somehow DC315 was optimized so we could pass one fire test? Seriously? Everyone knows DC315 is the most tested coating available with global recognition and over 350 full scale fire tests to national and international standards, we very clearly show the ability of our product to pass more than just one visual observation test. Anyone can tell you what you want to hear, but that is just not how we do business, we show you the unedited truth. As the industry leading manufacturer of code compliant fire solutions using coatings, we believe in supporting our customers, code officials, architects and anyone looking to protect against fire and most importantly life safety. We are your partner we understand we should be required to more than just pass a burn test, we need to clearly and truthfully give you the tests, facts and assist in understanding why we meet the codes. We back up everything we say with facts so please read on. BTW: please click on the links below I think it is important to understand our facts are based on confirmation by the best of the best with even them showing you the supporting research and how they conclude these Life Safety facts.
What is an alternative TB and how does it comply?
Foam plastic shall not be required to comply with the requirements of Section 2603.4 or those of Section 2603.6 where specifically approved based on large-scale tests such as, but not limited to, NFPA 286 (with the acceptance criteria of Section 803.1.2), FM 4880, UL 1040 or UL 1715. Such testing shall be related to the actual end-use configuration and be performed on the finished manufactured foam plastic assembly at the maximum thickness intended for use. Foam plastics that are used as interior finish on the basis of special tests shall also conform to the flame spread and smoke-developed requirements of Chapter 8.

So NFPA 286, UL 1715, FM 4880 and UL 1040 Tests meet the Codes for Alternative Thermal Barrier protection?
The short answer is Maybe. Section 2603.9 of the IBC, Section R316.6 of the IRC and Section 10 of NFPA 101 all list the UL 1715 as a method to qualify the assembly for use without a prescriptive thermal barrier. However, It is important to note the 2603.9 also states—“Foam plastics that are used as interior finish on the basis of special tests shall also conform to the flame spread and smoke developed requirements of Chapter 8.

So Alternative Thermal Barrier testing is separate from Interior Finish?
Yes, users must qualify their material to both Code requirements. Chapter 8 list two methods to qualify interior finish the ASTM E84 or NFPA 286. UL 1715 is not listed as a method to qualify as interior finish within the IBC Chapter 8. The ASTM E84 Steiner Tunnel can only test up to a maximum of 4” material thickness. Therefore, a material that is tested to UL 1715, as an alternative thermal barrier and ASTM E84 as an interior finish can only be installed up to a maximum of 4”. Alternatively testing the assembly in accordance with NFPA 286 at the maximum thickness for which recognition is sought qualifies as an alternative thermal barrier and as a Class A interior finish at the tested thickness. CLICK HERE FOR MORE INFO

Does a UL 1715 tested product meet the I-Codes and NFPA 101 Life Safety Code for alternative thermal and ignition barrier applications?
The answer is yes, and only yes if the additional E84 testing has been completed and verified on the specific SPF being used. Even with the E84 testing, the assembly is limited to 4” of SPF due to the limitation off the Steiner Tunnel. To leave foam, more than 4” thick, exposed to the interior with an alternative thermal barrier you must conduct NFPA 286 testing. Who says so! THE CODES. Ask for a valid test report or listing showing the specific foam is tested to meet both Code Criteria.

Doesn’t having an evaluation report mean the foam meets codes?
Evaluation reports are a great tool intended to address a products compliance with various code sections but not necessarily all code sections. Review the evaluation report carefully to ensure it lists the assemblies that qualify as alternative thermal barriers and meet interior finish requirements, again both are required. Have you looked at your coatings report? Does it state what test was used or reviewed, UL1715 or NFPA 286? Does the evaluation report clearly state ALL tests listed meet Chapter 8 for use at its maximum tested SPF inches, and meets interior finish? I know ours do!

Comparing NFPA 286 TO UL 1715, is one standard better than the other? YES!
Industry experts, testing facilities, evaluation organizations and the standards authors themselves all agree - the NFPA 286 provides a significantly better fire test. Jensen Hughes, an industry leading fire engineering firm focused on evaluating risks, fire protection systems, code consulting and risk assessment completed a 32-page comparison study of the NFPA 286 and UL175 fire tests. Jensen Hughes concluded that “the NFPA 286 fire test be used to determine the flame and fire growth of materials within a compartment. This test method provides a more data-based approach to determining fire performance and thus, results in a more robust test on which to regulate combustible materials in the codes and standards. Furthermore, the NFPA 286 test provides significantly better quantitative measurements for heat release, flashover and smoke generation.” These measurements in NFPA 286 room corner testing provide definitive proof the assembly complies with the intent of the Code. CLICK HERE FOR THE FULL REPORT!

Why is there a continuing campaign to discredit Underwriters Laboratories (UL) 1715?
To be clear we are not discrediting UL, far from it we have a great relationship with UL. In fact our partner INCA was awarded “World Wide Vendor of the year by UL” We are simply providing code clarification and independent third-party engineering studies to assist end users in making sure they understand the limitations of the testing on products they are considering and the impact on liability this may have.
DC315

How do you verify claims of competitors testing to NFPA 286?
All testing must be completed at a third-party testing facility. Ask to see the testing and or listing report and be sure it lists NFPA 286 – Note NFPA 286 (Appendix X) is not an alternative thermal barrier test it is a modified test that is meant to qualify ignition barriers only. It really is simple if they are unwilling to provide reports, or explain their Evaluation Reports why use them?

What about claims that DC315 is optimized to pass just this one test?
Do you know DC315 passed the ISO 9705 fire test for 20 minutes that is almost double the heat output as the 286? This is the fire test ran to qualify alternative thermal barriers assemblies in Canada. This robust test is ran at 100KW for the first 10 minutes and then increased to 300KW for the remaining 10 minutes compared to 40 Kw for 5 minutes and 160 Kw for 10 minutes in the NFPA 286 it is clear the ISO 9705 is a far more severe test in both heat exposure and duration. DC315 is the only intumescent used for spray foam to pass this test. DC315 has been tested too AND PASSED multiple fire tests in virtually all jurisdictions across the world including NFPA 286, UL 1715, ASTM E84, ISO 9705, CAN/ULC S-145, AUS 9705, EN 13501, EN 13823, ISO 11925, BS 476, ASTM E119, CAN/ULC S101, and NFPA 285. No other coating has passed the rigorous testing that DC315 has, it is clear to say DC315 is the most tested and approved coating available on the market today.

Do you know DC315 meets IBC, IRC and NFPA 101 by testing to NFPA 286?
Codes are specific that Flame Spread and Smoke Development must be tested. The UL 1715 method does not measure smoke by default, nor does it contain criteria within the referenced Codes to equate the flame spread performance to that of an interior finish. In contrast, the I-Codes and NFPA 101 Life Safety Code all contain criteria for assemblies tested to the NFPA 286 which allows a prescriptive route to compliance, not only as an alternative thermal barrier but also as interior finish.

Do you know DC315 is approved for use in schools, hospitals, and high occupancy?
Yes, with the increased emphasis put on Green building materials more scrutiny is placed on products to ensure they meet new Green Standards. DC315 is a water based, low VOC and environmentally friendly fire protective coating. Testing in accordance with emission standard CA 1350 shows DC315 complies for schools and high occupancy buildings- the highest standard. The CA 1350 method is recognized by many environmental codes and standards including USGBC LEED, WELL Building Standards, ANSI Green Building Assessment protocol and many more! CLICK HERE FOR MORE INFO!

Do you know all coatings produce a smell until fully cured with adequate ventilation?
The raw materials that are used to make intumescent paint produce odors however once dry and fully cured the materials are a fully inert odor free fire protective coating. Lingering odors are not a sign of a material issue rather a building science issue that can be resolved by ensuring the building has proper mechanical systems to ensure humidity and air exchange are maintained. CLICK HERE FOR MORE INFO!

Do you know DC315 can be used in NFPA285 applications for exterior continuous insulation projects under multiple cladding options?
Testing conducted by Underwriters Laboratory (UL) fire labs in Northbrook, IL evaluated DC315 intumescent coating, with protective topcoat, applied over Carlisle SealTite Pro Closed Cell spray foam with an aluminum cladding and concluded the wall assembly utilizing IFTI’s DC315 met the acceptance criteria stated in the NFPA 285 standard and is Certified under UL File R40016. Our coating can effectively satisfy IBC requirements for use of spray foam on exterior building walls of any height and expands the use of spray foam insulation in continuous insulation applications by providing designers with extended architectural cladding options beyond masonry. “With the push for continuous insulation growing among code enforcement authorities, we expect our NFPA 285 designation to increase demand for spray foam insulation and our DC315 coating. CLICK HERE FOR MORE INFO!

Do you know DC315 has a tested useful life in normal service conditions and that the performance is not compromised after 50 years?
After extensive 3rd party testing DC315 fire resistant property is not compromised after 50 years or more under normal service conditions. – DC 315 has performed a lot of testing and goes to great lengths to support our SPF Manufactures and the industry, but our Useful Life Testing, may be the most important industry test we have ever conducted. CLICK HERE FOR MORE INFO!
Do you know we have a Certified Applicator Training program?
Our CAP training course is designed to give the DC315 coating applicator a complete understanding of DC315 product information, techniques, and code compliance. This information is pertinent to the installation of DC315, alternate thermal and ignition barrier code compliant coating for SPF insulation. Upon completion the Certified Applicator will become part of the IFTI CAP system, you will be provided with a certificate of completion that you can use in all stages of obtaining jobs - from the bid stage through to final approvals and compliance. An educated applicator gets the job, not necessarily the cheapest. Sure, the cheap bid wins some jobs, but most contractors, building owners, and consumers look highly on an applicator who understand and guides them in the application of a coating to ensure Fire and Life Safety Codes are met. Applicator certification shows extensive due diligence and education on your part as the applicator. This will go a long way to showing you take life safety seriously and are providing a tangible measure of assurance to your inspectors and AHJ's that the product and installation meet applicable regulatory requirements.

CERTIFIED APPLICATOR PROGRAM!

Top 5 things to ask for when using alternative thermal barrier coatings!

- Does the coating have a current evaluation report
- Does the Evaluation report list the test method used to qualify the alternative thermal barrier?
- Does the evaluation report list the test method used to qualify as an interior finish?
- If the method to qualify an alternative thermal barrier is NFPA 286 you have met both Chapter 26 & Chapter 8.
- If the method to qualify the alternative thermal barrier is the UL 1715 does the evaluation report list each specific assemblies tested to ASTM E84 as an interior finish? Ask for a copy of the ASTM E84 test over the specific blend of foam. Even with the E84 testing, the assembly is limited to 4" of SPF due to the limitation off the Steiner Tunnel. To leave foam, more than 4" thick, exposed to the interior with an alternative thermal barrier you must conduct NFPA 286 testing.

Who says so! THE CODES. Ask for a valid test report or listing showing the specific foam is tested to meet both Code Criteria.

THE PROOF IS IN THE TESTING

Questions? Contact IFTI. » 949-975-8588
WWW.PAINTTOPROTECT.COM